Model order reduction for Bayesian approach to inverse problems

نویسندگان

  • Karen Willcox
  • Ngoc-Hien Nguyen
  • Boo Cheong Khoo
چکیده

This work presents an approach to solve inverse problems in the application of water quality management in reservoir systems. One such application is contaminant cleanup, which is challenging because tasks such as inferring the contaminant location and its distribution require large computational efforts and data storage requirements. In addition, real systems contain uncertain parameters such as wind velocity; these uncertainties must be accounted for in the inference problem. The approach developed here uses the combination of a reduced-order model and a Bayesian inference formulation to rapidly determine contaminant locations given sparse measurements of contaminant concentration. The system is modelled by the coupled Navier-Stokes equations and convection-diffusion transport equations. The Galerkin finite element method provides an approximate numerical solution-the ’full model’, which cannot be solved in real-time. The proper orthogonal decomposition and Galerkin projection technique are applied to obtain a reduced-order model that approximates the full model. The Bayesian formulation of the inverse problem is solved using a Markov chain Monte Carlo method for a variety of source locations in the domain. Numerical results show that applying the reduced-order model to the source inversion problem yields a speed-up in computational time by a factor of approximately 32 with acceptable accuracy in comparison with the full model. Application of the inference strategy shows the potential effectiveness of this computational modeling approach for managing water quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-driven model reduction for the Bayesian solution of inverse problems

One of the major challenges in the Bayesian solution of inverse problems governed by partial differential equations (PDEs) is the computational cost of repeatedly evaluating numerical PDE models, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven projection-based model reduction technique to reduce this computational cost. The propos...

متن کامل

An efficient Bayesian inference approach to inverse problems based on adaptive sparse grid collocation method

A new approach for modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adap...

متن کامل

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

Data-Driven Combined State and Parameter Reduction for Extreme-Scale Inverse Problems

In this contribution we present an accelerated optimization-based approach for combined state and parameter reduction of a parametrized linear control system which is then used as a surrogate model in a Bayesian inverse setting. Following the basic ideas presented in [Lieberman, Willcox, Ghattas. Parameter and state model reduction for large-scale statistical inverse settings, SIAM J. Sci. Comp...

متن کامل

A Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine

This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014